基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测

       实时监测水稻氮素状况对于评估水稻长势及精准田间管理意义重大。为确定宁夏引黄灌区水稻叶片全氮含量的最优高光谱估测方法,该文依托不同氮素水平水稻试验,基于成像高光谱数据和无人机高光谱影像,综合运用统计分析及遥感参数成图技术,对比分析光谱指数与偏最小二乘回归方法预测水稻叶片全氮含量的精确度和稳健性。结果表明,以组合波段738和522 nm光谱反射率的一阶导数构成的比值光谱指数(ratio spectral index,RSI)构建的线性模型为水稻叶片全氮含量的最优估测模型(检验R2为0.673,均方根误差为0.329,相对分析误差为2.02);无人机高光谱影像反演的水稻叶片全氮含量分布范围(1.28%~2.56%)与地面实际情况较相符(1.34%~2.49%)。研究结果可为区域尺度水稻氮素含量的空间反演及精准农业的高效实施提供科学和技术依据。

       四旋翼无人机执行器发生部分失效时的姿态控制问题.通过分析其动力学特性,将执行器故障以乘性因子加入系统模型,得到执行器故障情况下四旋翼无人机的姿态动力学模型.在同时存在未知外部扰动和执行器故障的情况下,设计了一种基于自适应滑模控制的容错控制器.利用基于Lyapunov的分析方法证明了所设计控制器的渐近稳定性.在四旋翼无人机实验平台上进行了实验,验证了该算法对存在未知外部扰动和执行器部分失效时四旋翼无人机的姿态控制具有较好的鲁棒性。


相关标签:基于  无人机  光谱  影像  引黄  灌区  水稻  叶片  全氮  含量  
明星产品 Hot products
热门资讯 Hot information
粤ICP备17015802号-1 © 2019 www.17uav.com中国无人机行业网|AOPA无人机培训|无人机考证|无人机驾驶培训|无人机航拍| 版权所有 侵权必究

粤公网安备 44130202000708号